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Phase separation and late-time domain growth in two-dimensional binary fluids of different-sized molecules
have been studied by molecular-dynamics simulations. The late-time growth is found to be insensitive to the
overall particle fraction of the mixture and with growth exponents approximately equal to 2/3, which corre-
sponds to the inertial growth regime, with interfacial growth for interconnected domains. The result may be
explained by the observation that the interfaces for the mixtures are very broad and fuzzy even at low
temperatures.@S1063-651X~96!03012-7#

PACS number~s!: 64.60.Qb, 05.70.Ln, 61.20.Ja, 64.75.1g

I. INTRODUCTION

The dynamics of domain growth in phase-separating sys-
tems is an important technological problem and also funda-
mental as an example of a highly nonlinear process far from
equilibrium. The phase separation takes place when a fluid
mixture is quenched to the unstable region of its phase dia-
gram and the growth of domains is governed in a scaling
regime by a power-law relation of the formR(t)}tn, where
t is time,R(t) is the average domain size, andn is an expo-
nent characterizing the growth. During the past decades
many simulations of such phase separations have appeared,
mostly for binary mixtures and for separations of lattice sys-
tems and by using stochastic dynamics, e.g., Monte Carlo
~MC! dynamics. Recently, however, also continuous systems
have been simulated by means of the molecular-dynamics
~MD! simulation technique. Since many growth dynamics
are covered by hydrodynamics@1# this is a nontrivial differ-
ence because the stochastic dynamics miss the hydrodynam-
ics modes and thus the growth obtained by MC dynamics
must deviate qualitatively from the corresponding growth
dynamics obtained by MD simulation for the same system. A
simple example of this difference is obtained for the domain
growth in a binary fluid mixture in two dimensions@2#. To
our knowledge all systems investigated so far have been for
particles with equal sizes and interaction energies. This sim-
plification is of course computational convenient since it is a
significant reduction in complexity and implies that systems
of many thousands of particles can be followed over suffi-
ciently long times in order to determine their growth. In this
work, however, we performed molecular-dynamics simula-
tions of phase separation in a two-dimensional~2D! binary
fluid with particles that differ largely in size and energy. As
the ratio of molecular sizes or masses takes values signifi-
cantly different from unity, the systems tend to simulate con-
densation of~small! particles in random cavities given by the
configuration of the big molecules. Such systems might ex-
hibit a complex phase diagram with a wetting transition for
sufficient low temperature. However, since our goal is to
investigate the influence of particle size on phase growth in a
binary fluid mixture we have chosen a ratio of sizes of only
2 and a temperature above the critical~gas-liquid! tempera-

ture of a pure 2D component in order to avoid competing
phase changes between the spinodal decomposition, conden-
sation~liquid-gas!, and wetting in the system. This paper is
organized as follows. The next section sets up the interaction
model and gives some details of the simulations. In Sec. III
we present the results of our computer experiments. We con-
clude Sec. IV with a discussion and a summary.

II. MODELS AND COMPUTATIONAL DETAILS

The system consists ofN5NA1NB , A andB particles,
respectively, which differs in van der Waals sizes by a factor
equal to 2. The present model is taken in close analogy to the
model used in@2,3#, where all particles were of Lennard-
Jones~LJ! type and the immiscibility between the two com-
ponents in the mixture was ensured in the simplest way pos-
sible by choosing different range of attraction between the
components. Immiscibility will occur if a positive excess en-
ergy of mixing exceeds the gain of mixing entropy. For sim-
plicity and computational accuracy, the range of attraction
between unlike species was taken at the minimum of the LJ
potential @2,3#. This choice ensures, at the same time, a
maximum excess energy of mixing and that no big force
gradients occur due to a truncation of the potentials. The
corresponding pair potential is the so-called Weeks-
Chandler-Andersen potential@4# and simple systems of such
particles have the same qualitative equilibrium and transport
properties as systems with long-range attractions@5#. The
two-dimensional particles are located in a square with areaA
and the densityr5N/A corresponds to a condensed fluid
mixture.

Still there are several properties to be specified for par-
ticles with different sizes. Particles that differ largely in size
must have ‘‘corresponding’’ differences in masses as well as
potential interactions. The relationship between the van der
Waals diameters is taken to besA /sB52 and the usual
Lorentz-Berthelot mixing rules for simple pair potentials
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establish some of the necessary relationships; but we still
have to specify the relationship between the size and the
masses and energies. When these relations were specified we
indeed had some real systems in mind, namely, phase sepa-
ration in colloidal fluid mixtures@6#. Although we are not
aware of any spinodal growth experiment for such mixtures,
it certainly must be possible. We have chosen the masses
proportional to the volume of the particles, i.e., for a 2D
system proportional tops2, and the energy proportional to
the surface of the particles, i.e., proportional to 2ps. The
reason for this choice is that the van der Waals attraction is
proportional to the number of valence electrons and~surface!
charges and the qualitative relations thus should be correct
for mixture of colloidal. The pair potentials in the simula-
tions are

uII ~r !54e IF S s I

r D 122S s I

r D 6G , ~3!

uAB~r !5H 4eF S sAB

r D 122S sAB

r D 6G1e, r,21/6sAB

0, r>21/6sAB ,

where I representsA or B particles, sA5s, sB5 1
2s,

eB5(sB /sA)eA5 1
2 e, sAB5(sA1sB)/2, and eAB

5(eAeB)
1/25A2e. In the following the parameterse ands

~for theA particles! set the energy and length scales, respec-
tively, and quantities will be given in reduced units accord-
ing to these scales.~The LJ potentials between particles of
the same species were truncated at 2.5s).

There are 25 600 particles in our simulations, withnA A
particles andnB B particles. The equations of motion were
integrated using the Verlet algorithm and the temperature
was controlled by coupling the system to a Nose´-Hoover
thermostat@7#. The time interval wash50.005 in reduced LJ
time units. The system was quenched from a state of perfect
mixture to a point of a state with phase separation by equili-
brating the mixture with attraction between unlike species
and then quenching the system by instantaneously removing
the attraction.~With respect to entropy of mixing, this cor-
responds to a quench from a very high temperature.!

Still there is one more fundamental problem to overcome
in the simulation of phase separation in systems of particles
that greatly differ in sizes. When such a phase separation
takes place it is associated with a relatively big excess of
pressure or volume, depending on the constraint on the simu-
lation. At equilibrium the constant-temperature MD simula-
tion corresponds to a canonicalN-V-T ensemble system. A
corresponding deep quench at constant volume will be asso-
ciated with a big change in pressure during the phase sepa-
ration. Alternatively one could, in principle, perform the
quench at constant pressure by which the total volume would
relax. In fact, the constant-pressure constraint is more physi-
cally relevant since it corresponds closely to usual experi-
mental circumstances. There is, however, a reason for choos-
ing to perform the quench at constant volume instead of
constant pressure. Monitoring the pressure is associated with
long relaxation times@7# and could interfere with the phase-
separation dynamics. It is known that domain structures are
very sensitive to the ‘‘external constraint’’ and we were con-

cerned that the phase separation could be driven by the vol-
ume scaling at constant pressure. The temperature is kept
constant during the phase separation and at a relatively low
value of T*5kBT/e50.75 in order to enhance the phase
separation. On the other hand, it is chosen well above the
critical ~gas-liquid! point (T* ,r* )'(0.450,0.35) of a pure
two-dimensional Lennard-Jones system@8#. ~The critical
pressure is approximately zero and all our quenches are per-
formed for condensed mixtures at much higher pressures.!

The quenches for different particle fractionsxA5NA /N of
the mixture were all performed for the same initial pressure
equal to 2.1 in the reduced scale~the average pressure of the
first 100 steps, or 0.5 in the reduced time scale! and the
temperature is kept atT*50.75 for all the processes. Critical
(xA50.292) and several off-critical (xA50.167, 0.5, and
0.75! quenches were carried out~Figs. 1 and 2!. The critical
particle fractionxA50.292 was obtained as the relative nar-
row interval of the particle fraction for which both compo-
nents percolate the area, whereas the off-critical particle frac-
tions are characterized by one of the components, at late
times, in the quenches that are solventlike and percolate the
area in both directions and another component that is solute-
like with droplets in the solvent.~Percolation and droplet
distribution were determined as described in@9#.!

The phase-separation dynamics were obtained from sev-
eral properties of the system during the separation. As in
@10#, we found that the excess potential energy, which is
proportional to the length of the interface, gave the most
accurate measurement of the growth. It was obtained in the
following way. The internal energy per particleu(t) was
monitored every ten steps from which the scaling regime can
be obtained from the excess potential energy as

FIG. 1. ~a!–~c! Domain formation of the small particles at a
critical concentrationxA50.292 and temperatureT*50.75 of the
big particles and as a function of quench time.~d! Corresponding
quench for particles of equal sizes andT*51.
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uexcess[u~ t !2u`}t2a, ~4!

whereu` is the potential energy of the system at equilib-
rium. An accurate determination of the scaling exponent re-
quires, however, a very precise estimate ofu` . It was ob-
tained in two different ways: one as the late-state potential
energy after more than 106 time steps and the other by equili-
brating a configuration with initially flat interfaces. The equi-
librium potential energy was obtained as potential energies
in the two systems at times for which they equal each other
within the statistical uncertainties@10#. Both systems were
found to equilibrate very slowly; but after more than 106

time steps, the energies were equal within the statistical un-
certainties. For example,u` for the critical quench, deter-
mined in this way, was20.675260.0040. In order to ensure
self-averaging and to increase the accuracy of the investiga-
tion we have performed ten individual quenches for each
particle fraction. The result of this extensive simulation
scheme is given in the next section.

III. RESULTS

The phase separations in the quenched mixtures take
place by decreasing the length of the interfaces, whereby the
excess energy of mixing and also the mean energyu(t) de-
crease. The slow domain decomposition was followed over a
time interval of 1000@in units ofs(m/e)1/2#, corresponding
to 2.105 time steps. Figures 1~a!–1~c! show the domain for-
mations at various times and for the particle fraction
xA50.292 of the big particles where both subphase systems
percolate the area at the end of the simulations, as can be
seen from Fig. 1~c!. For illustrative reasons the figures show
only the distribution of the small particles. Also shown, in

Fig. 1~d!, is the corresponding domain structure, but for a
system of particles with equal sizes@10# and taken at the
same separation time 1000, as in Fig. 1~c!. The domain struc-
tures, in particular the interfaces in the two figures, are sig-
nificantly different. Whereas the interface between coexist-
ing subphases is sharp and of the order of a few particle
diameters for equal size particles@Fig. 1~d!#, the interface is
very fuzzy in the present case@Fig. 1~c!#. Also the solubility,
in particular of small particles in theA-rich phase, is high,
which adds to the fuzzy structure. Both experiments, how-
ever, correspond to deep quenches with the creation of big
subdomains, as the corresponding structure factors indicate,
and we think that it is this qualitative difference of the struc-
ture of the interfaces that also shows the qualitative differ-
ence in growth between the two systems which will be dis-
cussed later. Figure 2 shows the distributions of the small
particles at the end of the simulations and for the four dif-
ferent particle fractions. The phase-separation lines for the
concentrations in coexisting phases are not symmetrical
aroundxA50.5, as in the case of equal-size particles, and the
critical concentration is, as mentioned, estimated to be
xA'0.29 in the present circumstances. At high concentration
of small particles, shown in Fig. 2~a!, the small particles
percolate in both directions and act as a solvent for the solute
of big particles; the opposite is the case for the concentra-
tions shown in Figs. 2~c! and 2~d!, respectively. The separa-
tions, however, in all four mixtures occur with a growth
corresponding to an exponent of the ordera'2/3 in ~4!.
This is in fact surprising to us since only one of the quenches
is for a concentration where both species occupy an equal
amount of the area. In the three other mixtures one of the
species, the solvent, dominates and in this case one usually
@2# obtains a significantly smaller growth exponent in accor-
dance with the theory for growth@1#. Figure 3 shows the
mean excess energy per particleu(t)2u` as a function of
time on a log-log plot, where the means are obtained from
ten independent quenches. In the time intervalt510–100,
where data still are relatively accurate and the final size of
the systems should not affect the growth result, all four sys-

FIG. 2. Distributions of the small particles for mixtures with
different particle fractionsx[xA of big particles. The distributions
are obtained after a separation time of 1000, which corresponds to
2.03 105 time steps.

FIG. 3. log-log plot of the late-time excess energyut2u(`) for
the four different particle fractions of the mixture, as a function of
quench timet. Each curve is the average over ten independent
quenches.
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tems have the same growth and with a limit speed consistent
with an exponent of the ordern'2/3. The systems also de-
viate with respect to the distribution of clusters during the
growth from the system with particles of the same size. Nor-
mally, if a system is quenched in an off-critical concentra-
tion, the domains are believed to grow by droplet condensa-
tion, i.e., small ~of order one! or big, but under all
circumstances with a diffusion mechanism that gives a
growth exponentn'1/3 @1# and with a distribution of clus-
ters that is exponentially distributed with respect to size@11#.
For equal-size particles we do indeed observe a slowing
down of growth speed for off-critical quench@2,13#, in ac-
cordance with theory. With respect to the cluster distribution,
the theoretical prediction is not strictly confirmed experimen-
tally. Seul, Morgan, and Sire@12# obtained a Gaussian dis-
tribution of domain sizes during the late-stage coarsening in
a 2D binary mixture in Langmuir films of dimyris-
toylphophatidylcholine and dihydrocholesterol. In the
present case, however, the distribution for small clusters is
completely different, but universal for all quenches at late-
stage times and concentration. Figure 4 gives the~normal-
ized! distributions of clusters of the small particles, at time
equal to 250 as a function of the numbern of particles in the
clusters. The clusters are determined as described in@9#, us-
ing the first minimum of the corresponding radial distribu-
tion function for the component in the mixture. As can be
seen from the log-log plot, the distribution is not exponential
but simply algebric forn up to order 20–30 and with a
universal slope approximately equal to22. The growth,
however, takes place at larger domains. Figure 5 shows this
behavior from the corresponding distribution of clusters as a
function of growth time and in system with a critical concen-
tration. The upper curve is the distribution at the start of the
quench, where there are only a few clusters that contain more
than 20–30 small particles. The dotted curve is the distribu-
tion after a short quench timet55. The dash-dotted curve
gives the late-time behavior, also shown in Fig. 4. The as-
ymptotic equilibrium distribution of small domains for
n,20 is established after very short quench times and is

maintained during the phase separation.

IV. DISCUSSION AND CONCLUSIONS

The immiscible binary mixtures were deliberately
quenched to a low temperatureT50.75 in order to ensure a
strong immiscibility and domain separation, and we did in-
deed observe a separation within the same time interval as
for a corresponding mixture of equal-size particles. But there
is, however, a significant difference between the two types of
mixtures. Whereas the interface for equal-size particles is
rather sharp and the mutual solubility in the phases are low,
as can be seen in Fig. 1~d!, it is the opposite here. In particu-
lar, the solubility of small particles in the phases of big par-
ticles is high and the distribution in Figs. 4 and 5 demon-
strates this. The growth exponenta, at late times, is of the
order 2/3, which corresponds to the so-called inertial~hydro-
dynamic! late-time regime. This regime should appear for
domains larger thanh2/gs, whereh is the shear viscosity
and g is the surface tension@1#. Molecular dynamics that
includes the hydrodynamics and the particle flow obeys the
Navier-Stokes equation, so for concentrations where both
components occupy the same volume fraction~critical con-
centration! this is to be expected, although it has never been
observed experimentally~in three dimension! @3#. A series of
MD calculations in two dimensions@2# and stochastic 2D-
models for phase growth with hydrodynamics, however, ex-
hibit this grow law @14–17#, but it is always obtained for
interconnected domain structures. In the present case, how-
ever, we do not observe any slowing down for concentra-
tions where one of the species dominates the other and acts
as a solvent for cluster growth. This is, in fact, surprising to
us. The natural explanation is that the interface is very broad
and unclear, as can be seen in Fig. 1, so that an instant
distribution of the particle does not give an appropriate pic-
ture of the domain distribution, which fluctuates largely with
the quench time. A broad interface and large fluctuations,

FIG. 4. log-log plot of the cluster density of small particles
~number of cluster/NB) as a function of number of particles in the
cluster. The values are obtained as the means of ten independent
quenches and are for the quench time equal to 250 atT*50.75.

FIG. 5. log-log plot of the cluster density of small particles, as
in Fig. 4, but for different quench times and at the temperature
T*50.75. The curves~from top to bottom! give the distributions
for quench timest50, 5, and 250, respectively, and for a system
with critical concentration. Also included is a straight line, with
slope equal to22.
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however, are normally a sign that the separation is close to
the critical point and it means not only that one should ob-
serve a slowing down of the growth, but also that the inertial
regime appears for even bigger domains since the surface
tension goes to zero and the viscosity is not very temperature
dependent. But we do not see any sign of a critical slowing
down and the upper consolute temperature is aboveT51,
for which we also observe a phase separation. As discussed
in Sec. II, a model of particles with different sizes needs
additional potential parameters. In the present case we chose
realistic circumstances by taking the masses to be propor-
tional to the volume~area! and the energies proportional to
the surface; an experimental example of such a binary mix-

ture could be a mixture of colloids with different surface
energies to ensure immiscibility. To our knowledge, how-
ever, there are no experimental data concerning phase sepa-
ration in such a mixture. So the present result with phase-
separation growth over a wide range of concentrations of
mixtures of particles that differ largely in size remains to be
seen experimentally.
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